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• IC fabrication outsourcing

– Semiconductor fab is expensive (> $15 billion by 2020 [1]).

– Increasing complexity of IC designs
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• The foundry might not be trustworthy

– IP Piracy, counterfeiting, hardware Trojan insertion…

– Economic loss and unreliable products



Logic Locking
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• Logic Locking* [2-13]:

– During fabrication time, the designer locks the circuit by adding 

additional logic gates (key-gates) and key-inputs

– The locked circuit preserves the original functionality only when 

a correct key is loaded into the on-chip memory
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*Some literatures called it logic obfuscation and logic encryption



• Various logic locking techniques [2-13]:

– Key-gate type

– Key-gate insertion algorithms 

Goals: (1) increase output corruptibility and (2) prevent key-learning

XOR/XNOR-based MUX-based LUT-based

Logic Locking
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Random Fault analysis Interference 
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Attacks on Logic Locking
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• Attack model [7, 8,11,13]:

– Goal: obtain the correct key

– Knowledge:  

1) A locked netlist obtained by reverse-engineering the layout

2) An activated chip obtained from open market, which can be 

used to observe correct I/O pairs as a black box

𝑋𝑖…

inputs
correct 
outputs

𝑌𝑖…

𝐾 = ? ?
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• Key search based attack [7,8,13]

– Test the correctness of a key using a subset of correct I/O pairs

– Does not guarantee a successful attack especially when

• key-size is large(e.g. >128) [7]

• key-gate types and locations are carefully selected [7,8,13]

– The obtained key is only “correct” w.r.t. that subset of I/O pairs.

• SAT based attack [11]
– Theoretically sound: guarantees to obtain the correct key w.r.t. all 

I/O pairs upon termination

– Efficient: break most logic locking techniques proposed in 

[5,6,10,11,12] within a few hours even for a reasonably large 

number of keys (e.g. >1000).



Def. 1  Wrong key combinations (WK):
• Example:

Def. 2   Distinguishing I/O pair (DIP)
• An I/O pair at i-th iteration is a DIP if it can 

identify a “unique” subset of wrong key 

combinations that cannot be identified by 

previous  i-1 DIPs.

SAT Attack Algorithm
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• Basic idea

– To iteratively find a set of special inputs and observe their 

outputs till they can identify all the wrong key combinations

– Formulated as SAT formulas and solved by SAT solvers

WK(DIP1)

WK(DIP3

)

WK(DIP

2)

WK(DIP4)

Correct key

Key space (2k)

𝑋, 𝑌 = 11, 01

⇒ 𝐾 ≠ (01, 10, 11)



SAT Attack Algorithm
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• An iterative attack

Locked 
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SAT 
formula

Correct 
key

Activated 
chip

Distinguishing 
Input

Distinguishing 
Input/output

SAT

UNSAT

Wrong key 
exists?

(SAT Solver)

𝑿𝒊
𝒅

(𝑿𝒊
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𝑭𝒊 = 𝑪 𝑿,𝑲𝟏, 𝒀𝟏
∧ 𝑪 𝑿,𝑲𝟐, 𝒀𝟐
∧ (𝒀𝟏 ≠ 𝒀𝟐)

∧ 𝑪 𝑿𝒊
𝒅, 𝑲𝟏, 𝒀𝒊

𝒅

∧ 𝑪 𝑿𝒊
𝒅, 𝑲𝟐, 𝒀𝒊

𝒅

∧ …

𝑲𝑪

Efficient because the number of iterations (# 

DIPs) required to identify all the wrong keys 

is small [13]



• Total execution time

– 𝒕𝒊: SAT solving time for i-th iteration

• Depends on benchmark characteristics 

(hard-SAT circuits like Multiplier)

• Idea: add an AES  to increase the SAT 

solving time [4]

• Drawback: significant overhead

– 𝝀:   total number of iterations

• Depends on key-size and key-gate 

location. However, previous logic locking 

cannot effectively counter SAT attack

• Idea: add our proposed Anti-SAT block 

such that 𝝀 is exponential to the key-size
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SAT Attack Efficiency Analysis
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• An n-input Anti-SAT block 

– Two n-input logic blocks 𝑔 𝐿 and 𝑔 𝐿

– 2n key-gates (XOR or XNOR) at their inputs

– Outputs of two logic blocks are fed into an AND gate

• Constant-output property
– For a correct key, the output of the Anti-SAT block is always 0 

– For an incorrect key, the output can be 0 (correct) or 1 (incorrect)
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Anti-SAT Block

𝑳 𝒈(𝑳) 𝒈(𝑳)

000…000 0 1

000…001 0 1

… … …

111…111 1 0

𝑌 = 0
⇒ 𝑓’ = 𝑓

𝑓 𝑓’

for a 

correct key



• Theorem 1: Assuming the output-one count 𝑝 of the n-input 

function 𝑔(𝐿) is sufficiently close to 1 or sufficiently close to 2𝑛 −
1, the number of iterations λ needed by the SAT attack to decipher 

the correct key is lower bounded by 2𝑛.

• Sketch of the proof:

1) Assuming there exists 𝑝 input vectors that make 𝑔(𝐿) outputs one (so 

2𝑛 –𝑝 input vectors that make 𝑔(𝐿) output one).

2) Show that each iteration can identify ≤ 𝒑 ⋅ (𝟐𝒏 − 𝒑) unique wrong key 

combinations.

3) Show that total #wrong key combinations = (𝟐𝟐𝒏 − 𝟐𝒏) .

4) Show that it needs 𝝀 ≥
𝟐𝟐𝒏−𝟐𝒏

𝒑⋅(𝟐𝒏−𝒑)
iterations to identify all wrong keys.

5) When 𝑝 → 1 or 𝑝 → 2𝑛 − 1, we have 𝝀 ≥ 𝟐𝒏. Hence proved.
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Security Analysis of Anti-SAT Block 
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Security Analysis of Anti-SAT Block 

• Theorem 1: Assuming the output-one count 𝑝 of the n-input 

function 𝑔(𝐿) is sufficiently close to 1 or sufficiently close to 

2𝑛 − 1, the number of iterations λ needed by the SAT attack to 

decipher the correct key is lower bounded by 2𝑛.

p = 1
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Anti-SAT Block

• How to integrate the Anti-SAT block?

• How to prevent removal attack?

Min-cut partitioning based 

removal attack

Input and output locations



• Anti-SAT block design

– Relationship between 𝜆, 𝑛, 𝑝:  𝜆 ≥
22𝑛−2𝑛

𝑝⋅(2𝑛−𝑝)

– When 𝑝 → 1 or 𝑝 → 2𝑛 − 1, we have 𝜆 → 2𝑛
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SAT Attack Results 



• Anti-SAT block application

– 6 benchmarks for ISCAS85 and MCNC (500+ ~ 6000+ gates)

– Three setups:

• TOC13: insert XOR/XNOR gates at the original netlist to 

increase output corruptibility

• TOC13 (5%) + n-bit baseline Anti-SAT (n-bit BA)

• TOC13 (5%) + n-bit obfuscated Anti-SAT (n-bit OA)
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SAT Attack Results 



• Anti-SAT block application (part 1)
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SAT Attack Results 



• Anti-SAT block application (part 2)
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SAT Attack Results 

TOC 13 only: unlocked in 48 iterations and 8.48 seconds

TOC 13 (5%) + n-bit BA: SAT-attack timeouts when 𝑘𝐵𝐴 = 28
TOC 13 (5%) + n-bit OA: SAT-attack timeouts when 𝑘𝑂𝐴 = 40



• Performance overhead

– A linear increase in area overhead can result in exponential
increase in SAT attack's computation complexity

– TOC13 +14-bit OA (~7% overhead) can result in 1 year SAT 
attack time (extrapolated) 

20

Overhead Result

des circuit

1 year



• A circuit block called Anti-SAT was proposed to mitigate the 

SAT attack on logic locking.

• We showed (using a rigorous mathematical proof) that the 

#iterations required by the SAT attack to reveal the correct key 

is exponential to the key-size of the Anti-SAT block.

• The Anti-SAT block was integrated to the circuit to defend 

SAT attack. Several obfuscation techniques were proposed to 

make the Anti-SAT block less distinguishable in order to 

defend the removal attack.

• Experiments results validated that a linear increase in 

performance overhead can result in exponential increase in 

SAT attack's computation complexity.
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Conclusion
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Thank you! Questions?
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• Anti-SAT block location 

– Need to ensure that the # iterations (# DIPs) is still large

– Input locations: shall be connected to original wires that are 

highly independent  

– Output location: shall be connected to original wire that has high 

observability from the primary outputs
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Anti-SAT Block



• Anti-SAT block obfuscation 

– Need to defend removal attack

1) Combined with conventional logic 

locking techniques

2) Structural obfuscation

• Add n MUX-based key-gates to 

increase interconnectivity 

3) Functional obfuscation

• Add n key-gates at the internal nets of 

Anti-SAT block

4) Re-synthesis the final design
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Anti-SAT Block 
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• Anti-SAT block location
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SAT Attack Results 

Location Inputs Output

Random
Randomly selected 

original wires

Another random wire that has a 

latter topological order

Secure Primary Inputs
A random wire that has top 

30% observability

Secure location results in ~2X iterations and ~3X execution time

(10 hrs)



• Anti-SAT block application

– 6 benchmarks for ISCAS85 and MCNC (500+ ~ 6000+ gates)

– Three setups:

• TOC13: insert XOR/XNOR gates at the original netlist

• TOC13 (5%) + n-bit baseline Anti-SAT (n-bit BA)

• TOC13 (5%) + n-bit obfuscated Anti-SAT (n-bit OA)
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SAT Attack Results 

Benchmark and key-size information
TOC13 logic locking



• Anti-SAT block obfuscation
– Attack: use min-cut partitioning to isolate the Anti-SAT block*

– Metric: percentage of gates the Anti-SAT block that are isolated and 

separated to the smaller partition

– With/without MUX-based routing network

– Area estimation error: 0% - 25%
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Obfuscation Results 

* use a 14-bit Anti-SAT block
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